
www.umbc.edu

CMSC201
 Computer Science I for Majors

Lecture 18 – Classes and Modules
(Continued, Part 3)

Prof. Katherine Gibson

Based on slides from the book author, and previous iterations of the course

www.umbc.edu

Last Class We Covered

• Constructors

• Difference between

– Data attributes

– Class attributes

• Special built-in methods and attributes

• Creating and using a class

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To harness the power of inheritance

– To learn about subclasses and superclasses

– To be able to redefine a method

– To be able to extend a method

• (Including __init__)

• To correctly use public and private in classes

• To understand name mangling and its purpose

4

www.umbc.edu

Find the Errors in the Code Below
def student:

 def init(self, n, a, g):

 name = n

 age = a

 gpa = g

 def updateGPA(newGPA):

 gpa = newGPA

def main():

 val = new student("Alex", 21, 4.0)

 test = new student("Test", 18, 0)

 updateGPA(test, 3.26)

main()

 5

There are at
least seven

unique errors

www.umbc.edu

Find the Errors in the Code Below
def student:

 def init(self, n, a, g):

 name = n

 age = a

 gpa = g

 def updateGPA(newGPA):

 gpa = newGPA

def main():

 val = new student("Alex", 21, 4.0)

 test = new student("Test", 18, 0)

 updateGPA(test, 3.26)

main()

 6

www.umbc.edu

Find the Errors in the Code Below
class student:

 def __init__(self, name, age, gpa):

 self.name = name

 self.age = age

 self.gpa = gpa

 def updateGPA(self, newGPA):

 self.gpa = newGPA

def main():

 val = student("Alex", 21, 4.0)

 test = student("Test", 18, 0)

 test.updateGPA(3.26)

main()

 7

www.umbc.edu

Inheritance

www.umbc.edu

Inheritance

• Inheritance is when one class (the “child”
class) is based upon another class (the
“parent” class)

• The child class inherits most or all of its
features from the parent class it is based on

• It is a very powerful tool available to you with
Object-Oriented Programming

 9

www.umbc.edu

Inheritance Example

• For example: computer science students are a
specific type of student

• They share attributes with every other student

• We can use inheritance to use those already
defined attributes and methods of students
for our computer science students

10

www.umbc.edu

Inheritance Vocabulary

• The class that is inherited from is called the

–Parent class

–Ancestor

– Superclass

• The class that does the inheriting is called a

–Child class

–Descendant

– Subclass
 11

www.umbc.edu

Inheritance Code

• To create a child class, put the name of the
parent class in parentheses when you initially
define the class

class cmscStudent(student):

• Now the child class cmscStudent has
the properties and functions available
to the parent class student

 12

www.umbc.edu

Extending a Class

• We may also say that the child class is
extending the functionality of the parent class

• Child class inherits all of the methods and
data attributes of the parent class

– Also has its own methods and data attributes

– We can even redefine parent methods!

13

www.umbc.edu

Redefining Methods

www.umbc.edu

Redefining Methods

• Redefining a method is when a child class
implements its own version of that method

• To redefine a method, include a new method
definition – with the same name as the
parent class’s method – in the child class

–Now child objects will use the new method

15

www.umbc.edu

Redefining Example

• Here, we have an animal class as the parent
and a dog class as the child

class animal:

 # rest of class definition

 def speak(self):

 print("\"" + self.species + " noise\"")

class dog(animal):

 def speak(self):

 print("Woof woof bark!")

 16

www.umbc.edu

Extending Methods

• Instead of completely overwriting a method,
we can instead extend it for the child class

• When might we want to do this?

–Constructor (__init__)

–Print function (__repr__)

–When else?

17

www.umbc.edu

Extending a Method

• Want to execute both the original method in
the parent class and some new code in the
child class

– To do this, explicitly call the parent’s version

• One major thing: you must pass in the self
variable when you call a parent method

– This is the only time you should do this!

18

www.umbc.edu

Extending Example

• Now we have a cat class as the child, with an
additional data attribute sleepsAllDay

class animal:

 def __init__(self, name, species):

 self.name = name

 self.species = species

class cat(animal):

 def __init__(self, name, sleepsAllDay):

 animal.__init__(self, name, "cat")

 self.sleepsAllDay = sleepsAllDay

19

www.umbc.edu

Student Inheritance Example

20

class student:
"""A class representing a student."""

 def __init__(self, name, age):
 self.full_name = name
 self.age = age

 def getAge(self):
 return self.age

class cmscStudent (student):
"""A class extending student class to CMSC students."""

def __init__(self, name, age, section):
 # call __init__ for student
 student.__init__(self, name, age)
 self.section_num = section

def getAge(self): # redefines getAge method entirely
 print ("Age: " + str(self.age))

www.umbc.edu
21

www.umbc.edu

Any Other Questions?

www.umbc.edu

Announcements

• Lab has been cancelled this week!

– Work on your project instead

• Project 1 is out

– Due by Tuesday, November 17th at 8:59:59 PM

– Do NOT procrastinate!

• Next Class: Recursion

23

